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Abstract

In general sense, under small perturbation the stability of rotor-bearing system can be determined by
linear oil-film coefficients of hydrodynamic bearing and oil-film forces can also be expressed by these
coefficients. This paper proposes an experimental method to identify these coefficients and presents their
characteristics under various operational conditions. A delicate test rig is constructed and experimental
data are acquired under various testing conditions. From the experimental data, the relative velocity of the
journal and the oil-film forces can be obtained by using a differentiator. The coefficients are identified using
least-mean-square method in time domain. Some identified results are compared with the theoretical data.
The experimental results indicate that the linear oil-film dynamic coefficients are sensitive to the excitation
amplitude. The intensity of sensitivity is varied for different coefficients. From the investigation, it can be
concluded that the linear oil-film force model will be invalid once the condition of small perturbation is not
satisfied.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Journal bearings have been widely used in high-speed rotating machinery. Since dynamic
characteristics of oil-film bearing affect the unbalance responses and stability of machines,
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

c radial clearance, mm
d1 linear damping coefficient matrix
dXX ; dXY ; dYX ; dYY linear damping coefficients,

N/m s�1

DXX ;DXY ;DYX ;DYY dimensionless linear damp-
ing coefficients, Di;j ¼ ðdi;j=mLÞðc=RÞ

3

ði; j ¼ X ;Y Þ

f 1 f 2; f 3 concentrating forces, N
f X ; f Y horizontal and vertical oil-film forces,

N
F ¼ fc2=mUL dimensionless force
k1 linear stiffness coefficient matrix
kXX ; kXY ; kYX ; kYY linear stiffness coefficients,

N/m
KXX ;KXY ;KYX ;KYY dimensionless linear stiff-

ness coefficients, Ki;j ¼

ðki;j=moLÞðc=RÞ
3
ði; j ¼ X ;Y Þ

L bearing length, mm
m mass of bearing housing (including

bottom and top splints, four steel
robs), kg

n effective size of data
R journal radius, mm
RV relative variation of the coefficients
U tangential surface velocity of the

journal, m/s
x1; y1 journal’s relative movement, mm
X ;Y system coordinates, bearing housing’s

absolute movement
m kinetic viscosity, Pa s
o angular velocity of rotation shaft,

rad/s
c ¼ 1:5% relative clearance
d dimensionless excitation amplitude
ð�Þ d=dt; derivative with respect to time

Subscripts

X direction of X

Y direction of Y

S.X. Zhao et al. / Journal of Sound and Vibration 287 (2005) 809–825810
obtaining reliable bearing oil-film coefficients becomes particularly important. However, there
exist so many factors influencing on the dynamic characteristics of oil-film bearing (such as
pressure boundary conditions, temperature boundary conditions, cavitations, etc.) that it is not
easy to calculate oil-film coefficients accurately. Thus both experimental and theoretical
investigations on oil-film coefficients of journal bearing are indispensable.

Since it is impossible to measure the linear oil-film coefficients directly, many experimental
techniques have been developed to identify these bearing parameters. All of these techniques are
featured by excitation of journal or rotor mass, measurement of the corresponding input force,
and the associated response of the journal or rotor mass. An economical and convenient
experimental method to estimate these dynamic coefficients is based on the impulse responses
[1–4]. An impulse excitation covers a wide range of frequency characteristics, which increases the
reliability of estimated coefficients. Tieu and Qiu proposed a method to determine the oil-film
coefficients from two or more sets of unbalance responses [5]. They utilized the synchronous
unbalance responses to simplify the calculation of coefficients. This method is convenient to
estimate the coefficients of journal bearing on-line. Kostrzewsky and Flack used sinusoidal
excitation to recognize oil-film coefficients [6,7]. Their method can produce high-energy and high
signal-to-noise ratio responses in the specified frequency. This method has been widely applied in
experimental studies, including this paper.

Notably, not so many successful studies on measuring bearing oil-film coefficients are available
up to now. Agreement between experimental results and theoretical predictions has been observed
only in some specific conditions. This paper is to identify the linear coefficients under various
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operating conditions and study the influence of perturbation amplitude on these coefficients. The
experimental study is performed on a deliberate test rig. The diameter of the test bearing is
152mm. First, the relative velocity and oil-film forces of this bearing are obtained from the
experimental data using a differentiating FIR filter. A least-mean-square method in time domain
is then introduced, and eight linear oil-film dynamic coefficients are identified and evaluated.
Detailed experimental procedures and data processing techniques are presented. Finally, some
measurement results are compared with the theoretical data. The influence of excitation amplitude
on these identified oil-film coefficients is also discussed.
2. Experimental techniques

2.1. Mathematical model

Based on the linear theory, the oil-film force increment of journal bearing is the linear algebraic
function of displacements ðx; yÞ and velocities ð _x; _yÞ with respect to the journal’s static equilibrium
position ðx0; y0Þ; it can be written as

D ~f X

D ~f Y

" #
¼ k1

x � x0

y � y0

" #
þ d1

_x

_y

" #
¼

kXX kXY

kYX kYY

" #
x � x0

y � y0

" #
þ

dXX dXY

dYX dYY

" #
_x

_y

" #
, (1)

where D ~f X ;D ~f Y are the oil-film force increments in the horizontal and vertical directions. k1 and
d1 are the linear stiffness and damping coefficient matrices. They have their respective four linear
coefficients. It is noted that once multi-sets of displacements ðx; yÞ; velocities ð _x; _yÞ and oil-film
force increments are obtained from the experiment, the linear oil-film coefficient matrices k1 and
d1 can be identified.
2.2. Experiment setup

Fig. 1 shows a schematic diagram of the test rig. The test shaft (5) is supported by two identical
five pad tilting-pad journal bearings (6) at both ends. A test bearing (13), diameter 152mm, width
88.3mm, radial clearance 0.114mm, is mounted between the supports. The test bearing along with
the bearing housing (11) and the metal gasket (16) sits on the bottom splint (17). The bottom
splint is dragged by four steel rods (9) which are screwed on the top splint (12). The top splint is
hung over the spring-opposed bellows (14) which sits on a stiff supporting framework (8). Using
this suspension structure, the test bearing floats over the test shaft.

When high-pressured air makes the spring-opposed bellows expand, the top splint is pushed up.
Consequently, the test bearing is dragged up. In this way, the equivalent static load, which can be
controlled by the air pressure and measured by a pressure sensor (10), can be applied to the
bearing. The static load can be up to 40 kN. In order to ensure the test bearing’s parallel
movement in the plane which is perpendicular to the axis of the shaft, eight smooth ground rollers
(15) are employed. They are symmetrically located at both ends of the test bearing. These rollers
prevent the test bearing from rotating, titling, and moving in the axial direction. Four smooth
ground steel balls are put between bottom splint (17) and metal gasket (16) to minimize friction.
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1) AC motor, 2) coupling, 3) gear box, 4) flexible bar coupling, 5) test shaft, 6) five pad
tilting-pad journal bearing, 7) supporting bearing housing, 8) stiff supporting framework,
9) drag rod, 10) pressure sensor, 11) test bearing housing, 12) top splint, 13) test bearing,
14) spring-opposed bellows, 15) roller, 16) metal gasket, 17) bottom splint

Fig. 1. Outline of journal bearing test rig.
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The shaft is driven by an 80 kW AC motor (1) through a gear box (3) and a flexible bar coupling
(2). The rotational frequency can be adjusted by an infinitely variable transmission controller
and can reach 60Hz (3600 rev/min). The transmission ratio of the gear box is 2.8. Two separate
oil supply systems are used to feed the lubricant into the gear box (3) and test bearing (13).
The lubricant is turbine oil 22#, kinetic viscosity 48:65� 10�3 Pa s at 20 1C and 28:25� 10�3 Pa s
at 30 1C.

It can be seen from Figs. 2 and 3 that two electric exciters compose the dynamic load system
(Fig. 2-1). They are placed perpendicular to each other at 451 to the horizontal pointing to the
geometric center of the test bearing. Each of the exciters is manipulated by an individual
controller and driver system. The exciters can generate sinusoidal forces up to 1.5 kN in two
directions simultaneously. And they are connected to the bearing housing by thin-walled tubular
connecters. The pressure sensors (Fig. 2-2), which mount in the middle of connecters, are used to
measure the excitation forces.

2.3. Oil-film force analysis

The oil-film forces in the experimental rig are analyzed in Fig. 4. Note that f 3 is the static load
on the bearing, which is induced by pneumatic loading system; f 1 and f 2 are dynamic loads, which
are generated by two exciters. In Fig. 4(a), the X and Y are absolute movement coordinates of the
bearing housing. In Fig. 4(b), the x1 and y1 are relative movement coordinates of the rotor. The
oil-film forces can be calculated from the following equations:

f X ¼ f 1 cos 45� � f 2 cos 45� þ m €X ,

f Y ¼ f 1 sin 45� þ f 2 sin 45� þ f 3 � mg þ m €Y , (2)
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1) electric exciter, 2,17) pressure sensor, 3,12,13,15) eddy current sensor,
4) test bearing house, 5) test bearing, 6) metal gasket, 7) drag rod, 
8) bottom splint, 9) steel ball, 10) temperature sensor, 11) test shaft,
14) oil inlet 16) spring-opposed bellows

Fig. 2. Outline of loading systems and sensors’ locations.
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Fig. 3. Overview of the test rig.

S.X. Zhao et al. / Journal of Sound and Vibration 287 (2005) 809–825 813
where f 1; f 2; and f 3 can be measured from pressure sensors in the test rig. Each of f 1; f 2; f 3; f X ;
and f Y can be divided into two components: the static f i0 and the dynamic ~f i (i ¼ 1; 2; 3;X ; or Y).
It should be pointed out that the static component of load f 3; i.e., f 30; is dominant, and the
dynamic component ~f 3 which results from the pneumatic loading system is trivial. In the process
of computing the dynamic oil-film force ~f Y ; the tiny dynamic component ~f 3 is taken into account.
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Fig. 4. Analysis of oil-film forces of bearing. (a) Forces acted on the bearing, (b) oil-film forces acted on the journal.
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The detailed calculation procedure and data acquisition techniques are discussed in the next
section.

2.4. Data acquisition

Displacement sensors and force sensors are employed to acquire testing data. The positions of
these sensors are shown in Fig. 2. Six eddy current sensors (Tsinghua 8500) are used to measure
displacements. Four of them (12 and 15) are installed on the test bearing housing at both ends of
the test bearing to measure the relative displacements between the bearing and the journal in the
horizontal and vertical directions ðx1; y1Þ: The other two (3 and 13) are installed on the framework
to measure the absolute displacements of bearing housing in the horizontal and vertical directions
ðX ;Y Þ: A pressure sensor (17, GKCT15-1A) is positioned under the top splint to measure the
pneumatic load ðf 3Þ: Another two pressure sensors (2, GKCT15-2C) are connected to the exciters
to measure dynamic loads (f 1 and f 2). In addition, a temperature sensor (10) based on thermistor
Pt is placed 0.5mm under the surface of the bearing to determine the temperature data.

Each sensor is equipped with a separate amplifier and a highly accurate power supply to reach
high accuracy in experiments. All signal cables are well shielded and grounded to avoid the
electromagnetic disturbance from ambient devices. All amplifier outputs are regulated in the range
of �10–10V. Totally ten amplified channel-signals are connected to a data acquisition card
(ADlink NuDAQ PCI-bus Card 9114). This data acquisition card is based on the 32-bit PCI Bus
architecture with 16-bit precision and sampling rate up to 100 kHz. Fifty thousand data points per
channel were captured at a rate of 5000 samples per second in the tests.

2.5. Experiment procedure

The experiments are executed in the following procedures:
1.
 Turn on the oil pump system; feed oil into the bearings and the gear box through two
lubrication circuits.
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2.
 Run AC motor and ensure the test shaft rotate at a given speed (300–1500 rev/s).

3.
 Start the air pressure system and increase the static load ðf 3Þ to a given value (0–20 kN).

4.
 Turn on electric exciters and apply dynamic loads (f 1 and f 2) to the test bearing. (0–1.5 kN,

sinusoidal wave 0–80Hz).

5.
 When the system runs for about 5min, the lubricant temperature becomes balanced and the

working condition of journal bearing stays steady. Sample the testing data and transfer them to
computer using the newly developed test application software.

Multi-sets of data have been obtained by repeating the aforementioned steps with different
rotating speed, static load, dynamic loads, etc.
2.6. Data processing

Many sets of data are obtained in the experiments. A program based on Visual Cþþ 6.0 is
newly developed to convert these data to standard ASCII files, which can be further processed by
Matlab, Fortran and other popular software.

The velocity of the bearing can be calculated based on the displacement values through a
designed differentiator (a FIR filter, see Appendix A). The differentiator can be reused to obtain
accelerations ð €X ; €Y Þ from absolute velocities ð _X ; _Y Þ of bearing housing. Since the mass ðmÞ of
bearing housing is known in advance, the oil-film forces can be calculated using Eq. (2).
Consequently, the oil-film forces, displacement and velocity in Eq. (1) are achieved. Next, the
linear oil-film coefficients can be identified using the least-mean-square method.

Each set of data is processed as follows:
1.
 Feed the original data to a low-pass FIR filter to eliminate high-frequency noise.

2.
 Check the data of the eddy current sensor to find out whether they are in linear measurement

range or not. Although the sensors are calibrated and installed carefully, their outputs may go
beyond the linear measurement range in some cases. The displacements measured by eddy
current sensor are the fundamental data in the following procedures. Accordingly, all of the
data in this file are considered invalid if the output of an eddy current sensor is not in its own
linear range.
3.
 Convert the data (voltage) from different channels into a corresponding physical value
(displacement, force or temperature).
4.
 Due to the limitation of data acquisition card, input channels can only be sampled channel by
channel instead of being sampled simultaneously. Consequently, there exist phase differences
among channels. An interpolating FIR filter is designed to eliminate the phase differences. This
filter serves the function as data interpolating, digital smoothing and data re-sampling. Using
this filter, new groups of data can be re-constructed and the phase differences among channels
can be eliminated.
5.
 Calculate the relative displacements ðx1; y1Þ and absolute displacements ðX ;Y Þ:

6.
 Calculate the velocity based on displacement values using the designed differentiator. After

that, the acceleration ð €X ; €Y Þ can be achieved from the velocity ð _X ; _Y Þ by reusing the
differentiator.
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After the above procedures, a set of values about ðx1; y1; _x1; _y1; €X ; €Y ; f 1; f 2; f 3Þ can be obtained.
Due to the FIR algorithm, the initial output data of a FIR filter is not available and should be
discarded. The number of the discarded data equals to the number of the filter’s tap. In order to
ensure that the sizes of the above nine variables keep equal, the other data, which are not filtered,
should be truncated correspondingly.
7.
 Compute the bearing oil-film forces using Eq. (2) and separate them into static parts ðf X0; f Y0Þ

and dynamic parts ð ~f X ; ~f Y Þ:

8.
 Recognize the linear oil-film coefficients using least-mean-square method.

9.
 Non-dimensionalize the coefficients.
3. Results and discussion

3.1. Coefficients identification

The oil-film force increment can also be written as

Df iðkÞ ¼ ki;1x1ðkÞ þ ki;2y1ðkÞ þ ki;3 _x1ðkÞ þ ki;4 _y1ðkÞ ðfor i ¼ X or Y ; k ¼ 1� nÞ, (3)

where Df iðkÞ is the oil-film force increment; n is the size of data obtained from each channel; ki;1

and ki;2 are linear stiffness coefficients; ki;3 and ki;4 are linear damping coefficients. It is assumed
that ~f iðkÞ is the measured dynamic oil-film force (oil-film force increment) obtained from Eq. (2).
The least-mean-square between Df iðkÞ and ~f iðkÞ can be calculated as follows:

min
ðk;dÞ

�2i ¼
Xn

k¼1

½Df iðkÞ �
~f iðkÞ


2. (4)

Then, the following equation is valid:

q�2i
qki;p

¼ 0 ðp ¼ 1; . . . ; 4; i ¼ X ;Y Þ. (5)

Combining Eqs. (3) and (5) yields:Pn

k¼1

x1ðkÞ
2 Pn

k¼1

x1ðkÞyðkÞ
Pn

k¼1

x1ðkÞ _x1ðkÞ
Pn

k¼1

x1ðkÞ _y1ðkÞ

Pn

k¼1

y1ðkÞx1ðkÞ
Pn

k¼1

y1ðkÞ
2 Pn

k¼1

y1ðkÞ _x1ðkÞ
Pn

k¼1

y1ðkÞ _y1ðkÞ

Pn

k¼1

_x1ðkÞx1ðkÞ
Pn

k¼1

_x1ðkÞy1ðkÞ
Pn

k¼1

_x1ðkÞ
2 Pn

k¼1

_x1ðkÞ _y1ðkÞ

Pn

k¼1

_y1ðkÞx1ðkÞ
Pn

k¼1

_y1ðkÞy1ðkÞ
Pn

k¼1

_y1ðkÞ _x1ðkÞ
Pn

k¼1

_y1ðkÞ
2

2
6666666666664

3
7777777777775

ki;1

ki;2

ki;3

ki;4

2
66664

3
77775 ¼

Pn

k¼1

x1ðkÞ ~f iðkÞ

Pn

k¼1

y1ðkÞ
~f iðkÞ

Pn

k¼1

_x1ðkÞ ~f iðkÞ

Pn

k¼1

_y1ðkÞ
~f iðkÞ

2
6666666666664

3
7777777777775
,

(6)

where kX ;1; kX ;2; kY ;1; and kY ;2 correspond to linear stiffness coefficients kXX ; kXY ; kYX ; and kYY in
Eq. (1); kX ;3; kX ;4; kY ;3; and kY ;4 correspond to linear damping coefficients dXX ; dXY ; dYX ; dYY in
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Fig. 5. Identified coefficients vs. sample number n.
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Eq. (1). Accordingly, the eight linear oil-film dynamic coefficients can be rearranged into
two sets ððkXX ; kXY ; dXX ; dXY Þ and ðkYX ; kYY ; dYX ; dYY Þ). They can be solved from two
linear algebraic sets of equations. The two linear algebraic sets of equations have the same
coefficient matrix, but with different vectors on the right-hand side. As the number of sample
points increases, the coefficient matrix and right-hand vector gradually change. It can be seen
from Fig. 5 that the identified coefficients will become steady when the number of sample points is
big enough.

3.2. The effect of load parameter on linear coefficients

Under a given working condition, the load of bearing (f Y0; the static load) can be calculated. A
load parameter FY can be obtained as follows:

f Y0

FY

¼
mUL

c2
. (7)

The load parameter FY is a comprehensive parameter in which bearing load, journal’s rotating
speed, lubricant temperature and viscosity of lubricant are involved. Therefore, the load
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parameter is suitable to characterize the operating condition of the bearing. Figs. 6 and 7 present
the characteristics of linear stiffness and damping coefficients under various load parameters.
There are 43 points, which are identified from 43 sets of testing data, in each figure. The dashed
lines are the quadratic polynomial fitting curve of the identified coefficients. The solid lines
represent the theoretical oil-film coefficients, which are calculated from the coupled generalized
Reynolds and energy equations using finite element method [8]. The pressure boundary conditions
are as follows:

p ¼ p0 at the grooves of bearing,

p ¼ 0 at the both ends of bearing.

p0 is the supply pressure, it can be determined by an oil-pressure meter.
As shown in Figs. 6 and 7, both the theoretical and experimental results show that the

stiffness and damping coefficients increase with the growth of load parameter. The
difference between them changes with the load parameter, and with coefficients. In general,
the two results have similar trends, and the difference is smaller when the load parameters
are small.

When FY is less than 0.5, most of identified results are close to the fitting curve. When FY is
greater than 1, the results are scattered away from the fitting curve significantly. It turns out that
the identified coefficients become less stable when FY increases, which indicates that nonlinear
components of the oil-film forces have significant impact on the identified dynamic coefficients
when FY becomes larger. Therefore, more attention should be paid for identifying the linear
coefficients in the case of large load parameters.

Comparing the figures, it can be shown that less degree of scatter occurs in the
stiffness coefficients than in the damping coefficients. The main reason for this
phenomenon is that the velocity is obtained from the differentiator. The filter introduces
some noise in the calculation, so the velocity error is larger than the displacement error.
Additionally, the components of velocity have much more effect on damping coefficients than on
stiffness coefficients.

An alternative method for obtaining less error velocity is based on the analytical expression of
displacement [10].
3.3. The effect of excitation amplitude on the identified dynamic coefficients

Figs. 8 and 9 present the identified stiffness and damping coefficients at different excitation
amplitude, under the condition of FY ¼ 0:35: The x-axis indicates the maximum dimensionless
excitation amplitude, which is defined as d ¼ LK=c; where LK ¼ maxð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ y2
1

p
Þ; x1 and y1 are

relative displacements of the bearing in two coordinates. c is the radial clearance of bearing. By
this means, the value of excitation amplitude can be represented by d:

In order to find out the relationship between each coefficient and d; a cubic polynomial is
constructed to fit the identified coefficients as

KDðdÞ ¼ a1d
3
þ b1d

2
þ c1dþ d1, (8)
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where a1; b1; c1 and d1 are constants. When the perturbation acting on the bearing is sufficiently
small, the linear coefficients should remain unchanged [9]. Therefore, each coefficient should be a
constant when d ! 0: Accordingly, the following equation is valid:

qKD

qd


d¼0

¼ 0. (9)

Combining Eqs. (8) and (9) yields c1 ¼ 0: Eq. (8) can be further rewritten as

KDðdÞ ¼ a1d
3
þ b1d

2
þ d1. (10)

The least-mean-square method is also employed to determine the parameters a1; b1 and d1: The
dashed fitting curve in each figure is established by this method. The influence of excitation
amplitude on these identified coefficients can be observed with the aid of these curves. However, it
is difficult to evaluate the influence intensity of d on different coefficients due to the different
scales of each figure. A relative variation (RV) of the coefficient is introduced to solve this
problem. It is defined as follows:

RVðdÞ ¼
KDðdÞ � KDð0Þ

KDð0Þ
. (11)

Eight RVs correspond to eight linear coefficients of bearing. The results are presented in
Figs. 10 and 11.
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Fig. 10. Relative variations of linear coefficients of bearing vs. dimensionless excitation amplitude d ðFY ¼ 0:35Þ:
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It can be observed from Fig. 11(a) ðFY ¼ 1:3Þ; at ðd ¼ 0:05; the RVs of stiffness coefficients
exceed 10% (except for KXY ); while in Fig. 10(a) ðFY ¼ 0:35Þ; at d ¼ 0:1; the RVs are not
over 10% (except for KXY ). A similar trend occurs in damping coefficients. When FY ¼ 1:3 (in
Fig. 11(b)), at d ¼ 0:05; all RVs of damping coefficients exceed 30%; while at FY ¼ 0:35
(in Fig. 10(b)), d ¼ 0:05; none of the RVs exceeds over 30%. Both of the observations indicate
that the coefficients are more sensitive to the excitation amplitude in the case of large load
parameters than in the case of small load parameters.

Analyzing these figures, more observations can be found. Under the same condition, each
coefficient’s RV has different sensitivity to excitation amplitude. KXY and DYX are most sensitive
among the eight coefficients. It indicates that the linear coefficients are sensitive to the excitation
amplitude, and the sensitivity is varied for different coefficients. In the case of large load
parameters, the influence of excitation amplitude on the identified coefficients becomes larger.
Therefore, linear oil-film coefficients should be identified using small amplitude excitation so as to
ensure them reliable.

The above observations have revealed the nonlinear characters of oil-film forces. In the
case of small amplitude excitation, the oil-film forces can be simplified as linear models. The
experimental results prove that the linear model is valid under this condition. However, when the
excitation amplitude becomes large, the nonlinear characters of the oil-film forces cannot be
ignored. If the linear model were still used to describe the oil-film forces, the coefficients would
change greatly. Therefore, the linear model is invalid and a new nonlinear model should be
reconstructed in this case.
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4. Conclusions

The following conclusions can be drawn from the above experimental study:
1.
 The least-mean-square method in time domain is a fast and effective algorithm to identify the
linear coefficients of journal bearings. The identified coefficients are repeatable and stable
under conditions of small load parameter.
2.
 The experiments show that linear coefficients increase with the growth of the load parameter.
This is in agreement with the theoretical calculation.
3.
 Because the velocity is acquired through a FIR differential filter, there is some noise involved.
It results in larger degree of scatter occurring in the identified damping coefficients than in the
identified stiffness coefficients.
4.
 The linear oil-film dynamic coefficients are sensitive to the excitation amplitude. Under the
same operation condition, the influence of excitation amplitude on the identified coefficient is
varied for different coefficients.
5.
 In the case of small load parameter, the identified dynamic coefficients are repeatable and
stable. While in the case of large load parameter, the influence of excitation amplitude on the
identified coefficients becomes larger, so the identified coefficients scatter to some extent. In this
case, small amplitude excitation should be employed to receive reliable coefficients.
6.
 Under conditions of the large excitation amplitude, because nonlinear components in the oil-
film forces are no longer negligible errors, the conventional linear model is invalid and
nonlinear oil-film force models should be adopted.
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Appendix A. The differentiator

In order to achieve the velocity and the acceleration from the measured displacement, a
differentiator (an FIR filter) is employed. Its principle is as follows.

It is assumed that yðtÞ is the derivative of xðtÞ with respect to time t

yðtÞ ¼ dxðtÞ=dt. (A.1)

Make Laplace transformation to Eq. (A.1), it turns into:

Y ðsÞ ¼ sX ðsÞ. (A.2)

Substitute s ¼ jo into Eq. (A.2), the transfer function can be gained

Y ðoÞ=X ðoÞ ¼ jo. (A.3)

In other words, the derivative of xðtÞ can be received by filtering it with a specific filter
whose transfer function is HðoÞ ¼ jo: In this work, a FIR filter is chosen, and its order
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Fig. 12. Comparison between the designed filter and the ideal filter.
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n ¼ 40; its sampling frequency f s ¼ 5000Hz: Fig. 12 depicts the filter’s transfer function,
and the ideal transfer function has also been shown in this figure. From this figure, it
can be observed that the filter will fail to work once the displacement signal has components
over 2000Hz. In fact, the displacement data has been filtered through a low-pass filter
before this process. The designed differentiator can satisfy the application demand in this
work.

Due to the differentiator’s slope-shaped transfer function, the filter may magnify the high
frequency noise involved in displacement signals. Though a low-pass filter has been used for the
displacement signals, there exists more noise in velocity signals than in displacement signals.
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